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Accelerated global glacier mass loss in the 
early twenty-first century

Romain Hugonnet1,2,3 ✉, Robert McNabb4,5, Etienne Berthier1, Brian Menounos6,7, 
Christopher Nuth5,8, Luc Girod5, Daniel Farinotti2,3, Matthias Huss2,3,9, Ines Dussaillant1,10, 
Fanny Brun11 & Andreas Kääb5

Glaciers distinct from the Greenland and Antarctic ice sheets are shrinking rapidly, 
altering regional hydrology1, raising global sea level2 and elevating natural hazards3. 
Yet, owing to the scarcity of constrained mass loss observations, glacier evolution 
during the satellite era is known only partially, as a geographic and temporal 
patchwork4,5. Here we reveal the accelerated, albeit contrasting, patterns of glacier 
mass loss during the early twenty-first century. Using largely untapped satellite 
archives, we chart surface elevation changes at a high spatiotemporal resolution over 
all of Earth’s glaciers. We extensively validate our estimates against independent, 
high-precision measurements and present a globally complete and consistent 
estimate of glacier mass change. We show that during 2000–2019, glaciers lost a mass 
of 267 ± 16 gigatonnes per year, equivalent to 21 ± 3 per cent of the observed sea-level 
rise6. We identify a mass loss acceleration of 48 ± 16 gigatonnes per year per decade, 
explaining 6 to 19 per cent of the observed acceleration of sea-level rise. Particularly, 
thinning rates of glaciers outside ice sheet peripheries doubled over the past two 
decades. Glaciers currently lose more mass, and at similar or larger acceleration rates, 
than the Greenland or Antarctic ice sheets taken separately7–9. By uncovering the 
patterns of mass change in many regions, we find contrasting glacier fluctuations that 
agree with the decadal variability in precipitation and temperature. These include a 
North Atlantic anomaly of decelerated mass loss, a strongly accelerated loss from 
northwestern American glaciers, and the apparent end of the Karakoram anomaly  
of mass gain10. We anticipate our highly resolved estimates to advance the 
understanding of drivers that govern the distribution of glacier change, and to extend 
our capabilities of predicting these changes at all scales. Predictions robustly 
benchmarked against observations are critically needed to design adaptive policies 
for the local- and regional-scale management of water resources and cryospheric 
risks, as well as for the global-scale mitigation of sea-level rise.

About 200 million people live on land that is predicted to fall below the 
high-tide lines of rising sea levels by the end of the century11, whereas 
more than one billion could face water shortage and food insecurity 
within the next three decades4. Glaciers distinct from the ice sheets 
hold a prominent role in these outcomes as the largest estimated con-
tributor to twenty-first century sea-level rise after thermal expansion2, 
and as one of the most climate-sensitive constituents of the world’s 
natural water towers12,13. Current glacier retreat temporarily mitigates 
water stress on populations reliant on ice reserves by increasing river 
runoff1, but this short-lived effect will eventually decline14. Under-
standing present-day and future glacier mass change is thus crucial 
to avoid water-scarcity-induced sociopolitical instability15, to predict 

the alteration of coastal areas due to sea-level rise4, and to assess the 
impacts on ecosystems16 and cryosphere-related hazards3.

Nevertheless, glacier mass change stands out as one of the 
least-constrained elements of the global water cycle, identified as a 
critical research gap in the Special Report on the Ocean and Cryosphere 
in a Changing Climate (SROCC) of the Intergovernmental Panel on Cli-
mate Change (IPCC)4. Observational limits stem from the fragmented 
expanse of glacierized surfaces around the globe. Largely inaccessible, 
only a few hundred of the more than 200,000 glaciers are monitored 
in situ17. Notwithstanding recent progress in glacier monitoring from 
space18, global-scale remote-sensing-based studies have been so far 
limited by (i) the coarse spatial resolution of satellite gravimetry, which 
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is unable to reliably disentangle glacier mass change signals from those 
of the ice sheets, solid Earth and hydrology in many regions5,19,20; (ii) 
the sparse repeat sampling of satellite altimetry that operated over 
short timespans5,10; and (iii) the uneven coverage of optical and radar 
surface elevation change estimations that account at most for 10% of 
the world’s glaciers21.

Spatiotemporally resolved estimation
In this study, we leverage large-scale and openly available satellite and 
airborne elevation datasets as a means of estimation, reference or 
validation of Earth’s surface elevation over all glaciers and their vicinity 
between 1 January 2000 and 31 December 2019 (Extended Data Fig. 1). 
For observational coverage, we rely mostly on NASA’s 20-year-long 
archive of stereo images from the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER). We use modern photogram-
metry techniques and specifically developed statistical methods to 
generate and bias-correct nearly half a million Digital Elevation Models 
(DEMs) at 30 m horizontal resolution. In total, our repeat DEMs cover 
more than 20 times Earth’s land area (Extended Data Fig. 2).

Changes in glacier elevation based on DEMs are traditionally quanti-
fied by differencing pairs of acquisitions from two distinct epochs. To 
harness the full potential of the repeat temporal coverage provided 

by the archives, we introduce an approach to producing continuous 
elevation time series interpolated from all available DEMs (see Meth-
ods, Extended Data Fig. 3). This technique allows us to mitigate the 
strong effects of seasonality while preserving longer, nonlinear glacier 
elevation changes through time. In total, we independently compute 
surface elevation time series for about half a billion pixels at a horizontal 
resolution of 100 m, covering 97.4% of inventoried glacier areas22, with 
an average of 39 independent observations per pixel between 2000 
and 2019 (Extended Data Table 2). Using glacier-wide hypsometric 
gap-filling methods, we then extend our estimated elevation changes 
to nearly 99.9% of glacier areas.

We perform an extensive validation by intersecting our elevation 
time series with 25 million high-precision measurements from NASA’s 
Ice, Cloud, and land Elevation Satellite (ICESat) and Operation Ice-
Bridge campaigns over glaciers, spanning 2003 to 2019. We thereby 
confirm the absence of temporal and spatial biases in our elevation 
change estimates (see Methods, Extended Data Fig. 4). We further 
utilize ICESat data to constrain the spatiotemporal correlations that 
are either structural to our interpolated elevation time series or that 
emerge owing to latent, uncorrected ASTER instrument noise, and 
we propagate our elevation uncertainties into volume change uncer-
tainties accordingly. We validate the reliability of our uncertainty 
estimates down to the scale of individual glaciers by comparison with 
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Fig. 1 | Regional glacier mass changes and their temporal evolution from 
2000 to 2019. Regional and global mass change rates with time series of mean 
surface elevation change rates for glaciers (indigo) of the 19 first-order RGI 
6.022 regions (white-delimited indigo polygons; region numbers indicated in 
parentheses), shown on top of a world hillshade36. Regions 2, 5, 9, 17 are further 
divided (N, S, E and W indicating north, south, east and west, respectively) to 
illustrate contrasting temporal patterns. Mass change rates are represented by 

the area of the disk delimiting the inside wedge, which separates the mass 
change contribution of land-terminating (light grey) and marine-terminating 
(light blue) glaciers. Mass change rates larger than 4 Gt yr−1 are printed in blue 
inside the disk (in units of Gt yr−1). The outside ring discerns between land 
(grey) and marine-terminating (blue) glacier area. Annual time series of mean 
elevation change (in m yr−1) and regional data coverage are displayed on time 
friezes at the bottom of the disks.
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independent, high-precision DEM differences for 588 glaciers around 
the globe (Extended Data Fig. 5).

Integration of elevation changes over each of the 217,175 inventoried 
glaciers yields volume change, which is subsequently converted to 
water-equivalent mass change23. Our analysis includes 200,000 km2 
of glaciers located near the coast of Greenland (Greenland Periphery) 
and in the Antarctic seas (Antarctic and Subantarctic), referred to as 
peripheral glaciers, that are distinct from the Greenland Ice Sheet (GIS) 
and the Antarctic Ice Sheet (AIS). We aggregate our estimates over the 
19 first-order regions of the Randolph Glacier Inventory 6.0 (RGI 6.0)22 
(Fig. 1), and report estimates for periods exceeding five years owing 
to larger uncertainties at shorter timescales (Extended Data Table 1). 
Uncertainties, provided at the 95% confidence level (two standard devi-
ations), depend primarily on observational coverage. When converting 
from volume to mass change, our estimates are largely hampered by a 
poor knowledge of density conversion23, which constitutes the domi-
nant uncertainty component of our glacier mass change assessment.

Global contribution to sea-level rise
From 2000 to 2019, global glacier mass loss totalled 267 ± 16 Gt yr−1 
(Extended Data Table 1), a mass loss 47% larger than that of the GIS, and 
more than twice that of the AIS7–9 (Table 1). Assuming that all meltwater 
ultimately reached the ocean, the contribution to sea-level rise was 
0.74 ± 0.04 mm yr−1 or 21 ± 3% of the observed rise24. Global glacier 
mass loss rapidly accelerated (see Methods) at a rate of 48 ± 16 Gt yr−1 
per decade (62 ± 8 Gt yr−1 per decade excluding peripheral glaciers), 
corresponding to a thinning rate acceleration of 0.10 ± 0.02 m yr−1 per 
decade (0.16 ± 0.02 m yr−1 per decade). While thinning rates increased 
steadily, mass loss acceleration slightly attenuated in time owing to 
the decreasing extent of glacier surfaces caused by glacier retreat. 
Excluding peripheral glaciers, thinning rates nearly doubled, from 
0.36 ± 0.21 m yr−1 in 2000 to 0.69 ± 0.15 m yr−1 in 2019. Observational 
studies have been unable to discern significant (95% confidence interval 
does not overlap zero) accelerated glacier mass loss19,21, with the excep-
tion of a recent gravimetric study20 that estimated an acceleration 
of 50 ± 40 Gt yr−1 per decade excluding peripheral glaciers. Despite 
its large uncertainties, this estimate is in agreement with our results. 
The observed acceleration of mass loss for glaciers exceeds that of the 
GIS7 and is similar to that of the AIS8. For the AIS, gravimetric obser-
vations indicate a decelerating mass loss since the mid-2010s25. We 
thereby infer that acceleration of sea-level rise since 2000, which is 
often attributed to the accelerated loss from both the GIS and AIS, also 
substantially originates from glaciers. Observed sea-level trends24 place 
the glacier contribution at 6–19% of the acceleration in global sea-level 
rise, with a mean estimate at 9%. The large spread of this contribution 
primarily arises from uncertainties in the observed acceleration of  
sea-level rise24.

Marine-terminating glaciers collectively represent 40% of Earth’s 
total glacierized area, yet only contribute 26% to the global mass loss 
(Fig. 1). This smaller contribution to sea-level rise is uniform for all 
maritime regions, except where losses of marine-terminating glaciers 
are dominated by recent large surge events (for example, Svalbard 
and Jan Mayen; Extended Data Fig. 6). The delayed and asynchronous 
response of tidewater glaciers to changes in climate26 may partly 
explain why most marine-terminating glaciers show reduced mass 
loss. Despite differing mass loss rates, relative acceleration of land- and 
marine-terminating glaciers within each maritime region are similar 
(Extended Data Table 3). Notable exceptions exist for glaciers in the 
Antarctic and Subantarctic, where few land-terminating glaciers are 
present, and in regions of strong surge-driven mass losses.

Regionally contrasting mass changes
Seven glacierized regions account for 83% of the global mass loss 
(Extended Data Table 1): Alaska (25%); the Greenland Periphery (13%); 
Arctic Canada North and South (10% each); Antarctic and Subantarctic, 
High Mountain Asia (composed of Central Asia, South Asia West and 
South Asia East) and the Southern Andes (8% each). From 2000 to 2019, 
specific-mass change (that is, mass change divided by area) strongly var-
ied in latitudinal belts (Fig. 2). The large, northernmost Arctic regions 
composed of Arctic Canada North, northern Greenland Periphery, 
Svalbard and Jan Mayen, and the Russian Arctic, all showed moderate 
specific-mass change rates, averaging –0.28 ± 0.04 metres water equiv-
alent (w.e.) per year. Further South in the Arctic (at latitudes encom-
passing Alaska, Arctic Canada South, southern Greenland Periphery, 
Iceland and Scandinavia) specific-mass change rates were consistently 
more negative, at a near-triple value of −0.74 ± 0.10 m w.e. yr−1, reach-
ing the world’s most negative regional rate over these two decades of 
−0.88 ± 0.13 m w.e. yr−1 in Iceland. Non-polar regions also experienced 
substantial mass loss (−0.69 ± 0.11 m w.e. yr−1 on average) with the excep-
tion of High Mountain Asia (−0.22 ± 0.05 m w.e. yr−1). The Antarctic and 
Subantarctic exhibited the least-negative specific-mass change rate of 
−0.17 ± 0.04 m w.e. yr−1.

Our regional mass change estimates closely match those of a recent 
gravimetric study19 in remote polar regions (Arctic Canada, Svalbard 
and Jan Mayen, and the Russian Arctic) in which gravimetric uncertain-
ties are considered small owing to weak competing signals27 (Fig. 3). We 
note, however, the large discrepancies between the latter gravimetric 
study19 and a more recent one20 in both Iceland and the Russian Arctic. 
We find good agreement with the dense in situ measurements of Central 
Europe, Scandinavia and New Zealand5. In High Mountain Asia and the 
Southern Andes, where gravimetric and glaciological records are less 
constrained, our mass change estimates of −0.21 ± 0.05 m w.e. yr−1 and 
−0.67 ± 0.15 m w.e. yr−1, respectively, are slightly more negative than the 
−0.19 ± 0.06 m w.e. yr−1 and −0.64 ± 0.04 m w.e. yr−1 reported by recent 

Table 1 | Separating mass losses of glaciers and ice sheets

Reference Mass change rate (Gt yr−1)

2000–2004 2005–2009 2010–2014 2015–2018a 2000–2018a 2003–2018a

Glaciers This study −227 ± 25 −257 ± 22 −284 ± 23 −292 ± 24 −264 ± 16 −272 ± 16

Greenland Ice Sheet IMBIE7 minus this study 
(Greenland Periphery)

−94 ± 65 −206 ± 56 −267 ± 57 −152 ± 64 −181 ± 31 −205 ± 32

Smith et al.9 −200 ± 24

Antarctic Ice Sheet IMBIE8 minus this study (Antarctic 
and Subantarctic)

−36 ± 118 −93 ± 104 −214 ± 94 −157 ± 87 −121 ± 104 −143 ± 104

Smith et al.9 −118 ± 48

Mass losses from glaciers, the GIS and AIS with 95% confidence intervals. Half of the peripheral glacier component estimated in this study is removed from the ensemble estimates of the ice 
sheet mass balance inter-comparison exercise (IMBIE)7,8; see Methods. 
aThe end date for the AIS IMBIE estimate is June 2017.
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DEM-based studies28,29. For glaciers located in the tropics (Low Lati-
tudes), our estimate of −0.43 ± 0.12 m w.e. yr−1 is about twice as negative 
as that of a recent interferometric radar study29, −0.23 ± 0.08 m w.e. yr−1, 
a difference that plausibly originates from biases associated with the 
penetration of radar signals into ice and firn30.

Drivers of temporal variabilities
While global glacier mass loss distinctly accelerated, the loss from 
glaciers peripheral to the GIS and AIS slightly decelerated, from 
65 ± 16 Gt yr−1 in 2000–2004 to 43 ± 13 Gt yr−1 in 2015–2019 (Extended 
Data Table 1). Variability within the ice sheet peripheries was strong, 
however (Figs. 2, 4a). The peculiar surface elevation change patterns 
that we capture for glaciers fringing Greenland, particularly notable 
around the eastern Greenland sub-regions of mass gain in 2015–2019 
(Extended Data Fig. 7), mirror those observed by satellite radar altim-
etry for the outer parts of the GIS31. Similarly, the elevation change rate 
patterns of Antarctica’s scattered peripheral glaciers largely agree 
with mass changes reported for the AIS8. Western Antarctic peripheral 
glaciers substantially thinned (−0.23 ± 0.06 m yr−1) while those of East 
Antarctica slowly thickened (0.04 ± 0.05 m yr−1). Ice masses surround-
ing the Antarctic Peninsula, representing 63% of the glacier area in 
the Antarctic and Subantarctic, experienced moderate, decelerating 
thinning (−0.19 ± 0.05 m yr−1), in line with recent gravimetric surveys 
of the entire peninsula25.

Only two regions of the world beyond the ice sheet peripheries expe-
rienced slowdown of glacier thinning. The record thinning rates of 
Icelandic glaciers during 2000–2004 (1.21 ± 0.18 m yr−1) were nearly 
halved during 2015–2019 (0.77 ± 0.13 m yr−1), which coincides with 
the decelerated thinning of Scandinavian glaciers. Both are well cor-
roborated by in situ observations21. Taken together, the slowdown in 
mass loss from these two regions, in addition to the one of peripheral 
glaciers of the southeast Greenland Periphery32, define a regional pat-
tern that we refer to as the North Atlantic anomaly.

Elsewhere on Earth, glacier thinning accelerated. The combined mass 
loss of these regions with increased loss escalated from 148 ± 19 Gt yr−1 in 
2000–2004 to 247 ± 20 Gt yr−1 in 2015–2019. Two-thirds of this increase 
derives from three regions: Alaska (38%), High Mountain Asia (19%) and 
Western Canada and USA (9%). Glaciers in the latter region experienced 
a fourfold increase in thinning rates. Most notably, glaciers in north-
western America (Alaska, Western Canada and USA) are responsible 
for nearly 50% of the accelerated mass loss. The widespread and strong 
increase of thinning of glaciers in High Mountain Asia brought a large 
sub-region of sustained thickening in central–western Asia down to a 
generalized thinning in the late 2010s (Extended Data Fig. 7), suggest-
ing the end of the so-called Karakoram anomaly10. Smaller glacierized 
regions also underwent strong, sometimes drastic acceleration of 
thinning. New Zealand, for example, shows a record thinning rate of 
1.52 ± 0.50 m yr−1 in 2015–2019, which is a nearly sevenfold increase 
compared to 2000–2004.

Analysis of climate data reveals that many of the regional patterns of 
mass change uncovered by our resolved estimates are consistent with 
large-scale, decadal changes in annual precipitation and temperature 
(Fig. 4b, c). Strong dipoles that reflect concordant spatial patterns 
between precipitation change and mass change are observed notably 
in northwestern America, the southern Greenland Periphery and the 
Southern Andes. The southern Andean dipole is consistent with the 
mega-drought33 of the 2010s that drove increased glacier mass loss 
in the Central Andes. In the Coast Mountains of western Canada and 
in southeast Alaska, glaciers were severely deprived of precipitation, 
which instead benefited neighbouring regions of central Alaska and 
continental USA, correspondingly showing either stable or reduced 
mass loss. The North Atlantic anomaly coincided with the cool, wet 
conditions of the last decade. Weaker dipoles can also be observed 
within the European Alps or Scandinavia. In both regions, glacier 

thinning slightly accelerated in the northeast and decelerated in the 
southwest.

Although decadal changes in precipitation explain some of the 
observed regional anomalies, the global acceleration of glacier mass 
loss mirrors the global warming of the atmosphere. Aggregated glob-
ally over glacierized terrain, we observe modest trends in precipitation 
during the period 2000–2019 (0.002 m yr−1, +6.2% in 20 years), whereas 
we detect a strong increase in air temperature (0.030 K yr−1). Combined 
with our estimate of accelerated mass change, this warming trend yields 
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Fig. 4 | Decadal patterns of glacier thinning are consistent with decadal 
variations in precipitation and temperature. a–c, Difference between 2010–
2019 and 2000–2009 for the mean elevation change rates from this study (a) 
and the mean annual precipitation (b), and mean annual temperature (c) from 
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an observational global glacier mass balance sensitivity to temperature 
of −0.27 m w.e. yr−1 K−1, in agreement with modelling-based estimates34. 
Previous studies35 have indicated large multi-decadal variation in rates 
of glacier mass change across the 20th century, implying that some of 
the acceleration that we observe could fall within the range of natu-
ral variability. Nonetheless, the strong concordance to the increase 
in global surface temperatures suggests, indirectly, a considerable 
response to anthropogenic forcing. Together, the contrasting patterns 
and global-scale sensitivities consistent with meteorological conditions 
support the notion of a long-term, temperature-driven acceleration 
in glacier mass loss13 that is still subject to regional and sub-decadal 
precipitation-driven fluctuations of large magnitude.

Two decades of observational wealth
Benefiting from the nearly complete spatial coverage afforded by ASTER 
stereo imagery, our global estimate of recent glacier mass change 
(−275 ± 17 Gt yr−1 for the 2006–2015 IPCC SROCC reference period) 
shows strongly reduced uncertainties compared to the latest IPCC 
report4 (−278 ± 226 Gt yr−1) and a recent global study21 (−335 ± 144 Gt yr−1). 
We resolve the time-varying nature of this mass change signal for nearly 
all of Earth’s glaciers, which reveals a significantly accelerated mass 
loss globally. Decadal rates of glacier mass change remain, however, 
strongly modulated by regional climatic conditions. We capture the 
magnitude of such fluctuations, most contrasting for North Atlantic 
and northwestern American glaciers that evolved in opposing direc-
tions. At the end of the 2010s, the North Atlantic anomaly brought a 
whole sub-region of the eastern Greenland Periphery close to balance, 
whereas the strong increase in thinning rates of High Mountain Asian 
glaciers probably marks the end of the Karakoram anomaly.

From the spatiotemporally resolved nature of our assessment, mul-
tiple possibilities arise to harness observations of the satellite era. 
Such resolved estimates are not only instrumental for glaciers, but 
also hold the potential to constrain recent ice sheet mass balance, in 
particular for the outlet glaciers that are prone to the highest long-term 
sea-level rise. The improved ability to deconvolve glacier signals from 
gravimetric observations might foster the detection of nearly two 
decades of changes in terrestrial water storage. In time, we expect 
our observational baseline to help drive the development of the next 
generation of global glaciological and hydrological models, and to 
ultimately result in more reliable projections at all scales14. In light of 
the rapid, ongoing change of the cryosphere, the increasingly reliable 
projections made possible by accurate, global-scale observations are 
critical for the design of adaptation strategies, with impacts ranging 
from further sea-level rise4,11 to changes in water management for some 
of the most vulnerable regions on Earth12,15.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-03436-z.

1.	 Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. 
Nature 569, 649–654 (2019).

2.	 WCRP Global Sea Level Budget Group. Global sea-level budget 1993–present. Earth Syst. 
Sci. Data 10, 1551–1590 (2018).

3.	 Stoffel, M. & Huggel, C. Effects of climate change on mass movements in mountain 
environments. Prog. Phys. Geogr. 36, 421–439 (2012).

4.	 IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds 
Pörtner, H. O. et al.) (IPCC, 2019).

5.	 Gardner, A. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 
2009. Science 340, 852–857 (2013).

6.	 Nerem, R. S. et al. Climate-change-driven accelerated sea-level rise detected in the 
altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

7.	 IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 
233–239 (2020).

8.	 IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558,  
219–222 (2018).

9.	 Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere 
processes. Science 368, 1239–1242 (2020).

10.	 Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early 
twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 
(2012).

11.	 Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to 
sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019); author correction 10, 
5752 (2019).

12.	 Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 
577, 364–369 (2020).

13.	 Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss 
to anthropogenic and natural causes. Science 345, 919–921 (2014).

14.	 Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss.  
Nat. Clim. Chang. 8, 135–140 (2018).

15.	 IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional 
Aspects (Cambridge University Press, 2014).

16.	 Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier 
retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

17.	 World Glacier Monitoring Service (WGMS). Fluctuations of Glaciers Database https://
wgms.ch/data_databaseversions/ (2019).

18.	 Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea 
level during the satellite era. Environ. Res. Lett. 13, 063008 (2018); corrigendum 13, 
099502 (2018).

19.	 Wouters, B., Gardner, A. S. & Moholdt, G. Global glacier mass loss during the GRACE 
satellite mission (2002–2016). Front. Earth Sci. 7, 96 (2019).

20.	 Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers 
and ice caps from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, 226 
(2020).

21.	 Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 
1961 to 2016. Nature 568, 382–386 (2019).

22.	 RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines. 
Technical Report https://www.glims.org/RGI/00_rgi60_TechnicalNote.pdf (Global Land 
Ice Measurements from Space, 2017).

23.	 Huss, M. Density assumptions for converting geodetic glacier volume change to mass 
change. Cryosphere 7, 877–887 (2013).

24.	 Ablain, M. et al. Uncertainty in satellite estimates of global mean sea-level changes, trend 
and acceleration. Earth Syst. Sci. Data 11, 1189–1202 (2019).

25.	 Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the 
GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, L11501 (2020).

26.	 Larsen, C. F. et al. Surface melt dominates Alaska glacier mass balance. Geophys. Res. 
Lett. 42, 5902–5908 (2015).

27.	 Blazquez, A. et al. Exploring the uncertainty in GRACE estimates of the mass 
redistributions at the Earth surface: implications for the global water and sea level 
budgets. Geophys. J. Int. 215, 415–430 (2018).

28.	 Shean, D. E. et al. A systematic, regional assessment of High Mountain Asia glacier mass 
balance. Front. Earth Sci. 7, 363 (2020).

29.	 Braun, M. H. et al. Constraining glacier elevation and mass changes in South America. 
Nat. Clim. Chang. (2019).

30.	 Dehecq, A. et al. Elevation changes inferred from TanDEM-X data over the Mont-Blanc 
area: impact of the X-band interferometric bias. IEEE J. Sel. Top. Appl. Earth Obs. Remote 
Sens. 9, 3870–3882 (2016).

31.	 Sandberg Sørensen, L. et al. 25 years of elevation changes of the Greenland Ice Sheet 
from ERS, Envisat, and CryoSat-2 radar altimetry. Earth Planet. Sci. Lett. 495, 234–241 
(2018).

32.	 Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice 
sheet’s sensitivity to atmospheric forcing. Proc. Natl Acad. Sci. USA 116, 1934–1939 
(2019).

33.	 Garreaud, R. D. et al. The Central Chile Mega Drought (2010–2018): a climate dynamics 
perspective. Int. J. Climatol. 40, 421–439 (2020).

34.	 Raper, S. C. B. & Braithwaite, R. J. Low sea level rise projections from mountain glaciers 
and icecaps under global warming. Nature 439, 311–313 (2006).

35.	 Parkes, D. & Marzeion, B. Twentieth-century contribution to sea-level rise from uncharted 
glaciers. Nature 563, 551–554 (2018).

36.	 Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: 
SRTM30_PLUS. Mar. Geod. 32, 355–371 (2009).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

https://doi.org/10.1038/s41586-021-03436-z
https://wgms.ch/data_databaseversions/
https://wgms.ch/data_databaseversions/
https://www.glims.org/RGI/00_rgi60_TechnicalNote.pdf


Article
Methods

We summarize the workflow used to process elevation datasets into 
estimates of glacier mass change for the period of 1 January 2000 to 
31 December 2019 (Extended Data Fig. 1).

Glacier inventories
We used the Randolph Glacier Inventory 6.0 (RGI 6.0)22 outlines for 
all regions except for Caucasus Middle East (region 12). Owing to 
the high number of uncharted (‘nominal’) glaciers in that region, we 
updated our inventory with the latest Global Land Ice Measurements 
from Space (GLIMS) outlines available37. This increased the number 
of glacier outlines in region 12 from 1,888 to 3,516, representing an 
increase in total area from 1,307 km2 to 1,336 km2. In Svalbard and Jan 
Mayen (region 7), we manually updated glacier outlines to account 
for advances resulting from major surges38–40, increasing mapped 
areas by 228 km2 (Extended Data Fig. 6). In the Greenland Periphery 
(region 5), we did not analyse the 955 glaciers strongly connected to 
the ice sheet (RGI 6.0 connectivity level 2) with an area of 40,354 km2, 
because these are generally included within the ice sheet by studies 
on the GIS7,9. Our updated inventory numbers 217,175 glaciers cov-
ering a total area of 705,997 km2. For the purpose of co-registering 
and bias-correcting DEMs, we masked ice-covered terrain using the 
RGI 6.0 for glaciers, the Greenland Ice Mapping Project41 for the GIS, 
and Bedmap242 for the AIS.

Digital elevation models
We retrieved all ASTER43, ArcticDEM44 and Reference Elevation 
Model of Antarctica (REMA)45 data intersecting glaciers worldwide 
(Extended Data Fig. 2), totalling more than 100 TB of data. Because 
of the non-negligible effects of radar penetration into snow and ice30, 
we excluded radar elevation datasets from our analysis except for 
the TanDEM-X 90 m global DEM46 (TanDEM-X). We used TanDEM-X 
as a globally homogeneous reference47 for co-registration48 and 
bias correction over ice-free terrain, keeping only elevations with 
an error smaller than 0.5 m in the provided TanDEM-X height error 
map. For all DEMs bilinearly resampled to 30 m, co-registration was 
performed only if more than 100 valid elevation differences (slope 
>3°, absolute elevation difference <200 m) were available at each 
iterative step.

From 440,548 ASTER L1A stereo images43 (each covering 60 km × 
60 km), we generated, co-registered and bias-corrected 154,656 ASTER 
DEM strips (30 m resolution; 180 km × 60 km strip size) using improved 
techniques of MicMac for ASTER49,50. Improvements were made by 
adjusting the back-looking image for cross-track biases before stereo 
calculations, by accounting for the curved along-track angle of the sat-
ellite Terra, and by stitching the arbitrarily split 60 km × 60 km archive 
granules into longer strips. The latter operation mitigates edge effects 
and increases the amount of ice-free terrain available for improved 
basin-hopping optimizations51 of along-track undulations and satellite 
jitter parameters. Further details on the processing of ASTER DEMs are 
available in Supplementary Information.

From 97,649 release 7 ArcticDEM44 DEMs at 2 m resolution and 
13,790 release 1.1 REMA45 DEMs at 2 m and 8 m resolution, we stitched 
and co-registered 40,391 ArcticDEM and 3,456 REMA longer strips to 
TanDEM-X. Our stitching of the original DEM segments, generated by 
the Polar Geospatial Center using the Surface Extraction with TIN-based 
search-space minimization algorithm52, was performed by a sequential 
pairwise co-registration between same-day acquisitions over all avail-
able terrain. This procedure was necessary to increase the amount of 
ice-free terrain in the final DEM strip for co-registration to TanDEM-X. 
We allowed for a maximum standard deviation of co-registered eleva-
tion differences of 10 m before stopping the sequential co-registration 
iteration and starting a new strip, instead of the 1-m root-mean-square 
error originally used44,45.

Elevation time series
Following co-registration, we excluded all DEMs for which the 
root-mean-square error of the elevation difference with TanDEM-X 
on ice-free terrain was larger than 20 m. Using all remaining DEMs, 
we created three-dimensional arrays (time t, space x and y) of eleva-
tion h(t, x, y), divided into 2,106 tiles of 1° × 1° containing glaciers and 
downsampled to 100 m to decrease computing time.

To filter and interpolate our DEMs into elevation time series, we 
empirically characterized the spatial and temporal variance of eleva-
tion observations. For this, two global-scale statistical modelling steps 
relying on a large sampling of the data were performed. One was used 
to assess the vertical precision of elevation observations and the other 
to assess their pairwise dependency with varying time lags (Extended 
Data Fig. 3a, b).

Concomitantly to the variance modelling process described fur-
ther below, a multi-step outlier filtering was performed to iteratively 
improve the quality of the DEMs (Extended Data Fig. 1), which itself 
affects the empirical estimation of the variances. The filtering algo-
rithms consist of a spatial filter, removing elevations outside a topo-
graphical maximum and minimum from the TanDEM-X elevations in 
the pixel surroundings, and a temporal filter propagated from the 
TanDEM-X elevation at a given pixel through a maximum possible 
glacier elevation change rate (Extended Data Fig. 3c). These maxima 
were first conditioned by extreme values (for example, the maximum 
observed absolute glacier elevation change rate of 50 m yr−1 on HPS12 
glacier, Southern Patagonian Icefield53). Later, those were refined by 
estimating a linear glacier elevation change rate in the surroundings 
through weighted least squares54.

In our first global-scale statistical modelling step, we identified a 
heteroscedasticity in elevation measurements (that is, non-uniform 
variance; Extended Data Fig. 3a). We determined that the elevation 
measurement error σh varied with the terrain slope55,56 α, the quality of 
stereo-correlation49,57 q and the individual performance of each DEM’s 
co-registration48 σc(t, x, y). To empirically quantify this elevation vari-
ance, we used ice-free terrain, where no changes in elevation are 
expected through time, as a proxy for ice-covered terrain. We randomly 
sampled up to 10,000 ice-free pixels without replacement for each bin 
of a studied category of terrain (for example, slope) in each 1° × 1° tile 
and computed the difference to TanDEM-X. We used the median as a 
robust estimator of the mean and the square of the normalized median 
absolute deviation (NMAD) as a robust estimator of the variance to 
mitigate the effects of elevation outliers58. We found that the empirical 
variances for the slope σα

2 and the quality of stereo-correlation σq
2 were 

consistent among regions, and used them to condition a model at the 
global scale to account for the measurement error independently for 
each elevation observation h(t, x, y):

σ t x y σ t x y σ α q σ q( , , ) = ( , , ) + ( , ) + ( ). (1)h α q
2
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In our second step of global-scale statistical modelling, we deter-
mined the temporal covariance of glacier elevation change (Extended 
Data Fig. 3b), which serves as our best unbiased estimator to interpo-
late elevation observations into continuous time series through Gauss-
ian process59 (GP) regressions. To empirically quantify this temporal 
covariance, we sampled median temporal variograms by the time lag 
between pairwise elevation observations Δt of ice-covered pixels. We 
found that the covariance structure could be estimated by the sum of 
a pairwise linear (PL) kernel, a periodic (exponential sine squared, ESS) 
kernel, a local (radial basis function, RBF) kernel, and the product of a 
pairwise linear and local (rational quadratic, RQ) kernel. This sum 
decomposes the differences of elevation observations with varying 
time lags into: an underlying linear trend (the PL), a seasonality (the 
ESS), a proximity at short time lags (the RBF) and a nonlinear trend  
(the RQ times PL). Empirical covariances showed little variability 



between regions. We thus conditioned the parameters of the kernels 
(periodicity ϕp and variance σp

2 for the ESS; length scale Δtl and variance 
σ l

2 for the RBF; length scale Δtnl, variance σnl
2  and scale mixture αnl for 

the RQ) at the global scale on the basis of our empirical variograms, 
whereas the PL kernel was determined directly from the observations 
of each pixel (x, y), and thereby described the temporal covariance as:
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By applying GP regression, we iteratively removed observations 
outside the 20σ, 12σ, 9σ, 6σ and 4σ credible intervals (Extended Data 
Fig. 3d). Within the same process, elevation time series were then 
derived at a monthly time step independently for each of the 400 mil-
lion pixels (x, y) falling on or within 10 km of an inventoried glacier22 
(Extended Data Fig. 3e). Further details on the variance estimation, 
filtering and time series methods are available in Supplementary Infor-
mation and build on refs. 60–63.

Validation of elevation time series
We retrieved all ICESat (GLAH1464) and IceBridge (IODEM365 and 
ILAKS1B66) laser and optical elevations intersecting glaciers world-
wide from the National Snow and Ice Data Center. IceBridge data are 
dominated by 1,220,494 Ames Stereo Pipeline67 photogrammetric 
0.5–2 m resolution DEMs65 with a typical footprint of 500 m × 500 m 
that we down-sampled to a resolution of 50 m to limit repeat spatial 
sampling when comparing to the 100 m resolution of our elevation 
time series. We linearly interpolated our GP elevation time series in 
space and time to match the date and centre of each ICESat footprint 
or IceBridge pixel68 (Extended Data Fig. 4a–c).

We found that regional and seasonal vertical shifts (typically below 
2 m) of surface elevation exist, and attribute these differences to snow 
cover in the TanDEM-X global DEM46 and the presence of seasonally 
varying snow cover in ASTER, ArcticDEM and REMA DEMs. At the global 
scale, these shifts do not affect our annual estimates once differenced 
into elevation changes, verified by the absence of elevation change 
bias over glaciers (0.001 ± 0.011 m yr−1). We additionally demonstrated 
that the uncertainties in our elevation time series (credible interval 
of the GP regression) are conservative (that is, too large by a factor of 
about two). We reached the same conclusions at the scale of individual 
RGI 6.0 regions, and also performed these verifications with several 
additional relevant variables (Extended Data Fig. 4d). In particular, the 
absence of a bias with glacier elevation denotes our ability to adequately 
resolve low-texture glacier surfaces in the accumulation area, includ-
ing flat, high-latitude ice caps. Further details on the validation of the 
elevation time series are available in Supplementary Information and  
build on ref. 69.

Integration of elevation into volume changes
We differenced all elevations h into elevation change according to their 
value of h on 1 January 2000. We integrated the elevation change dh 
into volume change dV independently for each glacier and time step 
using a weighted version of the mean local hypsometric method70 with 
100-m elevation bins. Weights were derived from the GP elevation 
change uncertainties, thus ensuring that pixels with a lower vertical 
precision in a given elevation bin have a smaller impact on the mean 
elevation change of that bin. Pixels with a 20-year elevation change 
larger than five times the NMAD from the median elevation change of 
the elevation bin were removed53. If no valid elevation estimate existed 
within a given bin, the elevation change was linearly interpolated from 
adjacent bins, or extrapolated from the closest bins. For retreating 
lake- and ocean-terminating glaciers, we excluded any loss below water 
level, because DEMs refer to the water surface and not the poorly known 
bathymetry in the deglaciated terrain. We note that these losses do not 
contribute to sea-level rise.

Uncertainty analysis of volume changes
We propagated our uncertainties in elevation change into uncertain-
ties in volume change by assuming that the uncertainty in the mean 
elevation change σ hd  and the uncertainty in the glacier area σA are 
independent:

σ σ A σ h= ( ) + ( d ) . (3)V h Ad
2

d
2 2

The uncertainty in the mean elevation change σ hd  is highly subject 
to spatial correlations due to instrument resolution (spatial scale of 
0–150 m), uncorrected ASTER instrument noise50 (0–20 km) and the 
interpolated nature of our elevation time series (0–500 km). The latter 
spatial correlation term arises from the fact that neighbouring pixels 
of a given region share similar temporal data gaps, and are hence likely 
to have similar interpolation biases that correspond to long-range 
correlations. To empirically quantify these three sources of spatial 
correlations, we drew spatial variograms of elevation differences 
between ICESat and our GP elevation time series71 at each ICESat acqui-
sition date. We found that the spatial correlations greatly varied with 
the time lag Δt to the closest ASTER, ArcticDEM or REMA observation. 
For each time lag, we estimated the partial sill sk (correlated variance) 
by fitting a sum of seven spherical variogram models S(d, sk, rk), with d 
the spatial lag, at ranges rk (correlation lengths) of 0.15 km, 2 km, 5 km, 
20 km, 50 km, 200 km and 500 km (Extended Data Fig. 5a, b). To prop-
agate these spatial correlations when integrating glacier volumes, we 
computed the time lag to the closest ASTER, ArcticDEM or REMA obser-
vation for each time step of our elevation time series and for each gla-
cier pixel to estimate s1 to s6. We then used the GP elevation change 
uncertainties of each glacier pixel to derive s0. Finally, we propagated 
the pixel-wise uncertainties in elevation change into the uncertainty 
in the mean elevation change σ hd  by circular integration of the sum of 
variograms72 over the glacier area A (Extended Data Fig. 5c):
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The reliability of the sum of short-range correlations used to account 
for uncorrected ASTER instrument noise (0–20 km) was further verified 
by applying empirical methods to ice-free terrain73, and found to yield 
larger and more realistic uncertainty estimates than the single-range 
variograms of 0.2–1 km used in previous studies28,53,54,74–76. Our maxi-
mum correlation length of 500 km accords with known spatial cor-
relations of mass balance estimates77. Further details on the spatial 
correlation methods are available in Supplementary Information and 
build on refs. 78–83.

For each glacier, we estimated an uncertainty in the area σA based on 
a buffer84 of 15 m corresponding to the typical resolution of the optical 
imagery used to derive these outlines37,85–87. These uncertainties vary 
from about 0.1% of the area for large icefields (>1,000 km2) to 50% of 
the area and above for small isolated glaciers (<0.1 km2).

Validation of volume changes
We retrieved high-resolution DEMs from LiDAR74,88, Pléiades54,89, Sat-
ellite Pour l’Observation de la Terre90,91 and aerial photographs92,93 
acquired in Alaska, Western North America, Central Europe and High 
Mountain Asia between 2000 and 2019. We derived precise volume 
change estimates during specific periods for 588 glaciers covering 
3,300 km2 and compared these to our volume time series extracted over 
the same glaciers and periods. We found no statistically significant bias 
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of mean elevation change (0.03 ± 0.03 m yr−1; Extended Data Fig. 5d). We 
then validated that our uncertainties, derived from spatially integrated 
variograms calibrated on ICESat measurements, matched the empirical 
errors deduced from the comparison (~92% of 95% uncertainty ranges 
intersect the high-precision volume changes; Extended Data Fig. 5d–f). 
On average, our 5-year uncertainties at the 95% confidence level are 
lower than 0.5 m yr−1 for glaciers larger than 1 km2 and conservative 
for smaller glaciers. We thus validated the reliability of our improved 
uncertainty approaches for volume change estimation down to the 
scale of individual glaciers.

Aggregation to regions
We summed volume changes of glaciers per region. To propagate cor-
related uncertainties among glaciers of the same region, we extended 
the spatial statistics approach used at the glacier scale. For each time 
step, glacier-wide correlated uncertainties were propagated again to 
yield an uncertainty in the mean regional elevation change σ hd R

. Having 
been integrated once over a spatial support (from pixel to glacier), the 
glacier-wide uncertainties can be propagated again (from glacier to 
regions) directly by a double sum of covariances based on the same 
describing variograms, following Krige’s relation71:
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where i, j are indexes for glaciers in the region, σ hd k i,
 is the uncertainty 

in the mean elevation change σ hd k
 with range rk and sill sk for glacier i, 

Gi − Gj is the pairwise distance (spatial lag d) between glaciers i and j on 
the basis of their outline centroids, and AR is the sum of areas Ai of gla-
ciers i in the region.

Conversion to mass changes
We converted volume change into mass change by using a density con-
version factor23 of 850 kg m−3 and an uncertainty of 60 kg m−3. This den-
sity conversion uncertainty was applied at the scale of RGI 6.0 regions, 
as if correlated for all glaciers in the entire region—an assumption that 
yields more conservative estimates than earlier studies29,54. We made 
this conservative assumption owing to the limited knowledge of spa-
tiotemporal correlations in density conversion. Consequently, our 
mass change uncertainties might be too large, in particular for regions 
with the most negative specific-mass change rates (Fig. 3, Extended 
Data Fig. 5g, h).

Aggregation to global
We summed our regional volume and mass change estimates into 
global volume and mass change. Assuming independence of the 
uncertainty in volume and mass changes between RGI 6.0 regions, we 
summed regional uncertainties quadratically. We report uncertain-
ties in mass change for periods shorter than five years solely for the 
global or near-global estimates (for example, Fig. 3b) by assuming 
that the aggregation of largely independent regions leaves limited 
temporal autocorrelation of density conversion factors. We compare 
our regional and global mass changes results with global and regional 
studies listed by the latest IPCC assessment4 as well as additional recent 
studies28,53,94–96 (Supplementary Table 4).

Time-evolving glacier areas
We accounted for temporal changes in glacier areas when deriving 
regional or global time series of specific (area-scaled) mass balances 
or mean elevation change (specific-volume change). We assumed a 
linear change through time, calibrated on time-evolving glacier out-
lines of each RGI 6.0 region21. Over the 20-year study period, these 
time-evolving glacier areas correspond to a nearly 10% decrease of 
glacier areas around the globe—a non-negligible change when assess-
ing mean elevation change rates. To account for this, we added an 

additional uncertainty in the time-evolving glacier area at each time 
step of 1% of the regional area at that time step.

Observed sea-level rise
We derived global mean sea-level trends from a recent study24 with time 
series extended to match our period of study of 2000–2019, yielding 
an estimate of sea-level rise of 3.56 ± 0.4 mm yr−1 with an acceleration 
of 0.15 ± 0.08 mm yr−2. For conversion, we assumed that 361.8 Gt of 
water-equivalent mass loss amounted to 1 mm of sea-level rise.

Acceleration
Glacier mass change acceleration and its uncertainties were derived 
from weighted least squares on the 5-year elevation and mass change 
rates (that is, 2000–2004, 2005–2009, 2010–2014 and 2015–2019), 
propagating their related uncertainties as independent. Although 
shorter timescales and smaller spatial domains are affected by tem-
poral autocorrelation, we assumed the 5-year estimates at the global 
or near-global scale (that is, excluding peripheral glaciers) as tem-
porally uncorrelated. This assumption is supported by timescales 
described for density conversion factors23, by the validation of our 
elevation time series with ICESat and IceBridge, and relies on the 
billions of globally distributed surface elevation observations, lead-
ing to large independent and repeat sampling over 5-year periods 
(Extended Data Table 2).

Distinction between glaciers and ice sheets
When comparing our results to ice sheet studies, we avoided 
double-counting contributions from peripheral glaciers by subtract-
ing part of our own estimate for RGI 6.0 regions 5 and 19 to ice sheet 
estimates from IMBIE7,8. Because IMBIE estimates are a weighted mean 
of three ensemble estimates where half includes peripheral glaciers, 
the other half does not (gravimetric studies include peripheral glaciers, 
altimetric studies exclude peripheral glaciers, and input–output stud-
ies do both), we assumed that subtracting half of our estimates for the 
peripheral glaciers was most adequate. Notably, applying this subtrac-
tion leads to better agreement of GIS and AIS estimates between IMBIE 
and a recent study9 over the period 2003–2018 (Table 1).

Temperature and precipitation analysis
We analysed ERA5 precipitation and temperature97 at both annual 
and seasonal scales. For the latter scale, we considered only winter 
precipitation and summer temperature. We found similar decadal 
patterns at both annual and seasonal scales, and thus present annual 
changes (Fig. 4) to avoid the latitudinal ambiguity of glaciological 
definitions of seasons. Temperature change was extracted at 700 hPa 
(about 3,100 m above sea level) to minimize variations in air tempera-
ture affected by differences in land surface class at the 0.125° nominal 
resolution of the ERA5 reanalysis. To estimate trends of annual pre-
cipitation and temperature over 2000–2019, we derived ordinary 
least-squares trends for each ERA5 grid cell containing glaciers. We 
then area-weighted the global trend by the glacierized area of each 
grid cell. We detected a small increase in precipitation at the global 
scale (4.0% in 20 years) and over glaciers (6.2% in 20 years), coherent 
with the amplification of the global water cycle in a warming world 
near the Clausius–Clapeyron rate98. The sensitivity of mass change to 
air temperature was computed by dividing the specific-mass change 
acceleration by the temperature increase over glacierized terrain for 
the period 2000–2019.

Data availability
Global, regional, tile and per-glacier elevation and mass change time 
series, elevation change maps for 5-, 10- and 20-year periods at 100 m 
resolution, and tables in this article are publicly available at https://doi.
org/10.6096/13. Source data are provided with this paper.



Code availability
The code developed for the global processing and analysis of all data, 
and to generate figures and tables in this article, is publicly available 
at https://github.com/rhugonnet/ww_tvol_study. Code concomitantly 
developed for processing ASTER data is available as the Python pack-
age pymmaster at https://github.com/luc-girod/MMASTER-workflows 
(with supporting documentation at https://mmaster-workflows.
readthedocs.io) and for processing DEM time series as the Python 
package pyddem at https://github.com/iamdonovan/pyddem (with 
supporting documentation at https://pyddem.readthedocs.io).
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Extended Data Fig. 1 | Flow chart of the methodology. Flow diagram describing the processing steps from satellite imagery to global glacier mass change time 
series. Processing steps correspond to sections in Methods.
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Extended Data Fig. 2 | Spatial and temporal coverage of ASTER, ArcticDEM 
and REMA DEMs. a–c, Spatial distribution of DEMs as a strip count for 
ArcticDEM strips above 50° N (a), ASTER DEM strips (b) and REMA strips below 
50° S (c), shown on top of a world hillshade36. 67,986 ArcticDEM and 9,369 
REMA strips are counted before co-registration to TanDEM-X. This later 

reduces their number to 40,391 and 3,456, respectively, owing to the limited 
stable terrain in polar regions. d, Temporal distribution of the strip count as a 
bi-mensual histogram from January 2000 to December 2019. We note that 
ArcticDEM and REMA strip footprints (15 km × 50 km) are generally much 
smaller than ASTER DEM strip footprints (180 km × 60 km).



Extended Data Fig. 3 | Elevation time series estimation. a–e, Empirical and 
modelled elevation measurement error (a) and temporal covariance of glacier 
elevation (b) estimated globally. These are used to condition the filtering (c, d) 
and elevation time series estimation (e) of elevation observations, illustrated 
here for a 100 m × 100 m pixel on the ablation area of Upsala, where a strong 
nonlinear elevation loss occurred99. a, Squared measurement error, estimated 
by the squared NMAD of elevation differences to TanDEM-X on stable terrain as 
a function of terrain slope and of quality of stereo-correlation. We express the 
quality of stereo-correlation as a percentage ranging from 0% for poor 
correlations to 100% for good correlations. b, Variance between pairwise 
glacier elevations in time, or temporal variogram. The empirical temporal 
variogram is derived from the aggregated median of variances binned by time 

lags of 0.25 yr. Here, pixels were selected on glacierized terrain showing a linear 
trend of elevation change (estimated from weighted least squares) between 
−1.5 and −1.0 m yr−1. The median of the linear trend at these locations 
(−1.2 m yr−1) was directly used to derive the linear model (orange), which has a 
quadratic variance. The other models are calibrated so that their sum (dashed 
black line) matches the empirical variogram. c, Spatial and temporal filtering 
by conditioning a maximum linear elevation change rate from the 
neighbouring TanDEM-X elevations (see Supplementary Information for 
further details). d, Filtering by successive GP regression fits for credible 
intervals of size 20σ, 12σ, 9σ, 6σ and 4σ. e, Elevation time series of final GP 
regression after the removal of outliers.
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Extended Data Fig. 4 | Validation of elevation time series and uncertainties 
to ICESat and IceBridge. a–d, ICESat64 and IceBridge65,66 measurements 
compared to our surface elevation time series over glacierized terrain in the 
Saint-Elias Mountains, Alaska (a–c) and at the global scale (d). b, Absolute 
z-scores (white to purple) are shown on top of the 2000–2019 surface elevation 
change. z-scores correspond to elevation differences to ICESat (dashed 
outlines) or IceBridge (solid outlines), standardized by our time series 
uncertainty. c, Time series for a 100 m × 100 m pixel extracted on the tongue of 

Agassiz Glacier with neighbouring ICESat and IceBridge elevation differences 
for demonstration purposes. d, Summary of global validation statistics for 
categories of time, season, region, elevation, observation time lag and total 
elevation change, with density distributions of measurements for ICESat  
(light grey) and IceBridge (dark grey). Mean elevation differences, subject to 
snow-cover biases, are shown only by region (summer mean) and by two-month 
seasonal component (difference to the annual mean) for each hemisphere.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Uncertainty analysis of volume changes and 
validation using high-resolution DEMs. a–h, Spatial correlation of elevations 
between the GP time series and ICESat with the time lag to the closest ASTER, 
ArcticDEM or REMA observation (a, b), propagation of correlations into 
specific-volume change uncertainties (c), validation of volume change 
estimates and uncertainties to high-resolution volume changes extracted over 
the same 588 glaciers and periods (d–f) and contribution from all uncertainty 
sources to the 2000–2019 specific-mass change estimates (g, h). a, An 
empirical spatial variogram is shown and fitted with a sum of spherical models 
at correlation lengths of 0.15, 2, 5, 20, 50, 200 and 500 km for elevation 
differences sampled at 720 days (2 years) from the closest observation.  
b, Spatially correlated variances as a function of the time lag to the closest 
observation. The model for the variance used during uncertainty propagation 
is shown in plain lines (sum of quadratic and squared sinusoidal functions 
optimized by least squares). c, Propagation of elevation change uncertainties 
to volume change uncertainties with varying glacier area. As this computation 
is specific to the time lag of each pixel to the closest observation, for each 
glacier, at each time step, c refers to an example. The spatial correlations are 
computed for a time lag to the closest observation, representing the average of 
our study, of 0–1 yr for 50% of observations, 1–2 yr for 20% of observations, 

2–3 yr for 20% of observations and 3–4 yr for 10% of observations. We assume a 
mean pixel-wise uncertainty of 10 m and simplify by considering only the first 
step of integration over a continuous glacierized area (equation (5)). This 
assumption leads to slightly larger contributions from short-range 
correlations than with further propagation to the second propagation step 
between discontinuous glaciers (equation (6)). Uncertainties are largely 
dominated by short- to long-range spatial correlations. d, Comparison of 
specific-volume changes per glacier with 1σ uncertainties. The mean of 
differences in estimates over all glaciers does not statistically differ from zero. 
e, f, Theoretical and empirical 1σ uncertainties, and their evolution with glacier 
size. The theoretical uncertainty is the mean of per-glacier uncertainties 
derived from spatially integrated variograms and the empirical uncertainty is 
the NMAD of the difference between high-resolution and GP estimates.  
g, h, Propagation of uncertainty sources to specific-mass changes for each 
RGI 6.0 region, and all glaciers with and without the Greenland Periphery and 
the Antarctic and Subantarctic, which are magnified in h. Uncertainties are 
largely dominated by the volume-to-mass conversion uncertainties globally, 
and by uncertainties in glacier outlines for regions with a relevant share of 
small glaciers.



Extended Data Fig. 6 | Two decades of elevation change over various 
regions. a–h, Elevation change of glaciers between 2000 and 2019 in 
Coropuna, Peru (a), Pamir Mountains (b), Iceland (c), Karakoram Mountains (d), 
European Alps (e), Southern Alps, New Zealand (f), West Greenland (note the 
rotated orientation of map) (g) and Svalbard (h). Except for Svalbard, glacier 

outlines displayed are from the RGI 6.0. In the background is shown a hillshade 
derived from several sources36,46,100. In Svalbard, outlines have been updated to 
include the massive surges of Austfonna Basin 338,39 in the northeast and 
Nathorstbreen in the southwest40, indicated by blue arrows.
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Extended Data Fig. 7 | Global evolution of 5-year thinning rates. a–d, Mean 
elevation change rates aggregated by tiles of 1° × 1° for the periods 2000–2004 
(a), 2005–2009 (b), 2010–2014 (c) and 2015–2019 (d). The tile area is inversely 
scaled to the squared 95% confidence interval of the mean elevation change in 
the tile, and tiles are coloured with mean elevation change rates, on top of a 

world hillshade36. The minimum tile area is 10% for a 95% confidence interval 
larger than 2 m yr−1 and tiles are displayed at full size for a 95% confidence 
interval smaller than 0.5 m yr−1. Region labelling refers to that of Fig. 2. The 
acceleration of thinning brings the Karakoram anomaly to its apparent end.



Extended Data Table 1 | Regional rates of glacier elevation and mass change from 2000 to 2019

Regional and global mean elevation change and mass change rates over 2000–2019 and 5-year subperiods of 2000–2019. The mean elevation change is the volume change divided by 
time-evolving regional glacier areas (see Methods)21. Areas reported are those of the RGI 6.0 inventory22, except for region 12 (Caucasus Middle East), which was updated with more recent 
outlines37. Periods are inclusive and refer to calendar years of 1 January–31 December. Uncertainties correspond to 95% confidence intervals. In Greenland, glaciers highly connected to the ice 
sheet (RGI 6.0 connectivity level 2) are not reported.
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Extended Data Table 2 | Regional data coverage of elevation time series from 2000 to 2019

Spatial and temporal coverage of our elevation time series after the three steps of elevation outlier filtering. Nominal glaciers correspond to uncharted glaciers inventoried in the RGI 6.0 with 
only an estimated surface area, present notably in region 10 (North Asia), where they contribute to 3.0% of the region’s total glacier area. Those are accounted for in our volume change 
estimates by applying the mean elevation change of the region to their reported area. Glaciers without any coverage correspond to glaciers having no valid, post-filtering elevation change 
observation within their outline. This generally occurs when repeat spatial sampling is poor (less than three observations in 20 years) for small glaciers located in steep slopes.



Extended Data Table 3 | Regional rates of land- and marine-terminating glaciers in maritime regions

Uncertainties correspond to 95% confidence intervals. For marine-terminating glaciers, subaqueous losses are not included (see Methods).
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