Leveling adjustment and land uplift

Calculation of a land uplift model

Reykjavík June 2005 Olav Vestøl

Leveling observations

From Norway, Sweden and Finland

Geopotential differences between nodal points

From 1890 - 2003

Tide gauges

🗐 58 stations

Martin Ekman's values, published in 1996.

GPS-rates

55 stations in BIFROST

Results from Martin Lidberg's Licentiate Thesis

Permanent GPS-stations

The data A summery

Leveling

Relativ land uplift values between nodal points.

Some points are measured one time only.

Influenced by the rise of the geoid

Tide gauges

Apparent land uplift values. Values relative to a rising mean see level.

Influenced by the rise of the geoid

GPS-stations

Absolute' values observed in a geodetic frame work we assume is stable.

Not influenced by the rise of the geoid

Where

1

- = **Observations**
- **A** = **Design matrix**
- **X** = Unknown heights and trend coefficients
- **B** = **Design matrix for the signals**
- **s** = Signals (unknown land uplift.)

n = Noise

Observation equation

For leveling

$$l_i = -1\mathbf{h}_{\mathbf{a}} + 1\mathbf{h}_{\mathbf{b}} + 1\mathbf{a} + x\mathbf{b} + y\mathbf{c} + xy\mathbf{d} + x^2\mathbf{e} + \dots \qquad t_i\mathbf{s}_{\mathbf{a}} + t_i\mathbf{s}_{\mathbf{b}} + n_i$$

For tide gauges

$$l_i = 1\mathbf{a} + x\mathbf{b} + y\mathbf{c} + xy\mathbf{d} + x^2\mathbf{e} + \dots + 1\mathbf{s}_i + n_i$$

For GPS-stations

$l_i = 1\mathbf{a} + x\mathbf{b} + y\mathbf{c} + xy\mathbf{d} + x^2\mathbf{e} + \dots + 1\mathbf{GPS_{const}} + u_{appr}\mathbf{GPS_{scale}} + 1\mathbf{s_i} + \mathbf{s_i} + s$	'n
--	----

Where

h _a	=	the height of the start point of the leveling line
h _b	=	the height of the end point of the leveling line
a – e	=	coefficients on the trend surface. Only the five first are listed here.
GPS_{const}	=	unknown constant in the GPS-rates
${\it GPS}_{\it scale}$	=	unknown scale factor in the GPS-rates
S _a	=	signal in the start point of the leveling line
S_b	=	signal in the end point of the leveling line
\boldsymbol{S}_{i}	=	signal in the station point
Х, У	=	coordinates of the points involved
ti	=	reference year – observation year
U _{appr}	=	Approximated uplift (= the observed GPS-rate)
ni	=	Noise
1;	_	An observation
1		

The ordinary solution

$$\hat{\mathbf{x}} = \left(\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathbf{x}\mathbf{x}}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathbf{x}\mathbf{x}}^{-1} \mathbf{I}$$
$$\hat{\mathbf{s}} = \mathbf{C}_{\mathbf{s}\mathbf{s}} \mathbf{B}^{\mathrm{T}} \mathbf{C}_{\mathbf{x}\mathbf{x}}^{-1} \left(\mathbf{I} - \mathbf{A}\hat{\mathbf{x}}\right)$$

Where:

 $\mathbf{C}_{\mathbf{x}\mathbf{x}} = \mathbf{C}_{\mathbf{II}} + \mathbf{B}\mathbf{C}_{\mathbf{s}\mathbf{s}}\mathbf{B}^{\mathrm{T}}$

Schwarz method

Where

X - Unknown heights and trend surface

- S Unknown land uplift
- \mathbf{N}_{11} Normal equation matrix for X
- \mathbf{N}_{12} Normal equation matrix for S
- C_{ss}⁻¹ Inverse Co-variance matrix

Variance component estimation

□ Four types of input to the normal equations

- Leveling
- 🗐 Tide gauges
- GPS-rates
- Inverse co-variance matrix (artificial observations)

□ The leveling observations are separated into eight groups

New and old Norwegian

1. 2. and 3. Swedish leveling

1. 2. and 3. Finnish leveling

For each group we calculate:

Sum of squares $\mathbf{n}_i^T \mathbf{C}_i^{-1} \mathbf{n}_i$

Redundancy \mathbf{r}_i

Variance component

 $\hat{\sigma}_{0i}^{2} = \frac{\mathbf{n}_{i}^{T} \mathbf{C}_{i}^{-1} \mathbf{n}_{i}}{\mathbf{r}_{i}}$

Results of the variance component estimation

Calculated standard deviations

Leveling data:
Old Norway:
New Norway:
Finland 1.:
Finland 2.:
Finland 3.:
Swedish 1.:
Swedish 2.:
Swedish 3.:
GPS-rates (average):
Tide gauges (average):
Artificial observation:

- 1.3 mm/km
- 1.1 mm/km
- 1.1 mm/km
- 0.9 mm/km
- 0.8 mm/km
- 2.0 mm/km
- 1.4 mm/km
- 1.1 mm/km
- 0.5 mm/yr
- 0.1mm/yr
- 0.3mm/yr

(0.6)

Multiple T-test:

Each observation is tested for outliers individually by setting an unknown parameter ∇ into the normal equation system.

If the test value ∇/m_{∇} is higher than 3 we may claim an outlier.

After reduction of the extra column:

 $\nabla = b/a$ $m_{\nabla} = m_0 \sqrt{q_{\nabla \nabla}} = \sqrt{(\sum p \nabla v - b^2)/(ndf-1)}/a = m_0'/a$

 $\nabla/m_{\nabla} = b/m_{0}$

Results of the test of outliers I

Rejected outliers

7
6
6
2
3
2
1
2

🗐 Tide gauges	
🗆 Oslo	0.9 mm/yr
🗖 Furuøgrund	0.9 mm/yr

No GPS-rates are rejected

Internal reliability

- "A measure for how well the observations in a network mutually control each other" (Baarda: "The ability to detect gross errors".)
 - \blacksquare Greatest remaining outlier $[\nabla 2m_{\nabla}, \nabla + 2m_{\nabla}]$
 - □ Affected by network design, weights and <u>observations</u>.
 - Redundancy: a number between 0 an 1
 - Affected by network design and weights only.
 - □ In simple cases, such as levling, it turns out that the redundancy $r_i = a^2/p_i$ where p_i is the weight

- "Maximum influence of a remaining outlier on the unknowns, or on a function of them."
- In our case we are interesting in the land uplift which means influences on the trend coefficients and on the signals

New constant columns have to be Choleskey reduced:

Reliability of land uplift model

The co-variance model

 $F(X) = 10D^2 - 8D + 1$

Land uplift

The fit of the GPS-rates

Constant and scale
 -1,32 mm/yr +/- 0.14 mm/yr
 5.7% of the absolute land uplift +/- 2.3%

Residuals	(mm/yr)	
Five larges		
□ WROC (Poland)	1,54	
BUDP (Denmark)	-1,24	
🗖 OSLS (Norway)	1,22	
🗖 LAMA (Poland)	-1.05	
🗖 TRDS (Norway)	-0.99	
🗖 In total		
	0,44	
□ Mean	-0,01	
Outlier test		
No station rejected		

- □ Mar6 (Sweden) suspect
 - □ *T*-value 2,7 □ Outlier value -0,78 mm/yr

Standard deviations on the uplift values

Gridding of the model

